谈到阻塞,相信大家都不会陌生了。阻塞的应用场景真的多得不要不要的,比如 生产-消费模式,限流统计等等。什么 ArrayBlockingQueue, LinkedBlockingQueue, DelayQueue... 都是阻塞队列的实现啊,多简单!
阻塞,一般有两个特性很亮眼:1. 不耗cpu的等待;2. 线程安全;
额,要这么说也ok的。毕竟,我们遇到的问题,到这里就够解决了。但是有没有想过,这容器的阻塞又是如何实现的呢?
好吧,翻开源码,也很简单了:(比如ArrayBlockingQueue的take、put....)
// ArrayBlockingQueue /** * Inserts the specified element at the tail of this queue, waiting * for space to become available if the queue is full. * * @throws InterruptedException { @inheritDoc} * @throws NullPointerException { @inheritDoc} */ public void put(E e) throws InterruptedException { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) // 阻塞的点 notFull.await(); enqueue(e); } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting * up to the specified wait time for space to become available if * the queue is full. * * @throws InterruptedException { @inheritDoc} * @throws NullPointerException { @inheritDoc} */ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { checkNotNull(e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) { if (nanos <= 0) return false; // 阻塞的点 nanos = notFull.awaitNanos(nanos); } enqueue(e); return true; } finally { lock.unlock(); } } public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) // 阻塞的点 notEmpty.await(); return dequeue(); } finally { lock.unlock(); } }
看来,最终都是依赖了AbstractQueuedSynchronizer类(著名的AQS)的await方法,看起来像那么回事。那么这个同步器的阻塞又是如何实现的呢?
java的代码总是好跟踪的:
// AbstractQueuedSynchronizer.await()
/** * Implements interruptible condition wait. **
*/ public final void await() throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); Node node = addConditionWaiter(); int savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { // 此处进行真正的阻塞 LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE) interruptMode = REINTERRUPT; if (node.nextWaiter != null) // clean up if cancelled unlinkCancelledWaiters(); if (interruptMode != 0) reportInterruptAfterWait(interruptMode); }- If current thread is interrupted, throw InterruptedException. *
- Save lock state returned by { @link #getState}. *
- Invoke { @link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. *
- Block until signalled or interrupted. *
- Reacquire by invoking specialized version of * { @link #acquire} with saved state as argument. *
- If interrupted while blocked in step 4, throw InterruptedException. *
如上,可以看到,真正的阻塞工作又转交给了另一个工具类: LockSupport的 park 方法了,这回跟锁扯上了关系,看起来已经越来越接近事实了:
// LockSupport.park()
/** * Disables the current thread for thread scheduling purposes unless the * permit is available. * *If the permit is available then it is consumed and the call returns * immediately; otherwise * the current thread becomes disabled for thread scheduling * purposes and lies dormant until one of three things happens: * *
- *
- Some other thread invokes { @link #unpark unpark} with the * current thread as the target; or * *
- Some other thread { @linkplain Thread#interrupt interrupts} * the current thread; or * *
- The call spuriously (that is, for no reason) returns. *
This method does not report which of these caused the * method to return. Callers should re-check the conditions which caused * the thread to park in the first place. Callers may also determine, * for example, the interrupt status of the thread upon return. * * @param blocker the synchronization object responsible for this * thread parking * @since 1.6 */ public static void park(Object blocker) { Thread t = Thread.currentThread(); setBlocker(t, blocker); UNSAFE.park(false, 0L); setBlocker(t, null); }
看得出来,这里的实现就比较简洁了,先获取当前线程,设置阻塞对象,阻塞,然后解除阻塞。
好吧,到底什么是真正的阻塞,我们还是不得而知!
UNSAFE.park(false, 0L); 是个什么东西? 看起来就是这一句起到了最关键的作用呢!但由于这里已经是 native代码,我们已经无法再简单的查看源码了!那咋整呢?
那不行就看C/C++的源码呗,看一下parker的定义(park.hpp):
class Parker : public os::PlatformParker {private: volatile int _counter ; Parker * FreeNext ; JavaThread * AssociatedWith ; // Current associationpublic: Parker() : PlatformParker() { _counter = 0 ; FreeNext = NULL ; AssociatedWith = NULL ; }protected: ~Parker() { ShouldNotReachHere(); }public: // For simplicity of interface with Java, all forms of park (indefinite, // relative, and absolute) are multiplexed into one call. c中暴露出两个方法给java调用 void park(bool isAbsolute, jlong time); void unpark(); // Lifecycle operators static Parker * Allocate (JavaThread * t) ; static void Release (Parker * e) ;private: static Parker * volatile FreeList ; static volatile int ListLock ;};
那 park() 方法到底是如何实现的呢? 其实是继承的 os::PlatformParker 的功能,也就是平台相关的私有实现,以 linux 平台实现为例(os_linux.hpp):
// linux中的parker定义class PlatformParker : public CHeapObj{ protected: enum { REL_INDEX = 0, ABS_INDEX = 1 }; int _cur_index; // which cond is in use: -1, 0, 1 pthread_mutex_t _mutex [1] ; pthread_cond_t _cond [2] ; // one for relative times and one for abs. public: // TODO-FIXME: make dtor private ~PlatformParker() { guarantee (0, "invariant") ; } public: PlatformParker() { int status; status = pthread_cond_init (&_cond[REL_INDEX], os::Linux::condAttr()); assert_status(status == 0, status, "cond_init rel"); status = pthread_cond_init (&_cond[ABS_INDEX], NULL); assert_status(status == 0, status, "cond_init abs"); status = pthread_mutex_init (_mutex, NULL); assert_status(status == 0, status, "mutex_init"); _cur_index = -1; // mark as unused }};
看到 park.cpp 中没有重写 park() 和 unpark() 方法,也就是说阻塞实现完全交由特定平台代码处理了(os_linux.cpp):
// park方法的实现,依赖于 _counter, _mutex[1], _cond[2]void Parker::park(bool isAbsolute, jlong time) { // Ideally we'd do something useful while spinning, such // as calling unpackTime(). // Optional fast-path check: // Return immediately if a permit is available. // We depend on Atomic::xchg() having full barrier semantics // since we are doing a lock-free update to _counter. if (Atomic::xchg(0, &_counter) > 0) return; Thread* thread = Thread::current(); assert(thread->is_Java_thread(), "Must be JavaThread"); JavaThread *jt = (JavaThread *)thread; // Optional optimization -- avoid state transitions if there's an interrupt pending. // Check interrupt before trying to wait if (Thread::is_interrupted(thread, false)) { return; } // Next, demultiplex/decode time arguments timespec absTime; if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all return; } if (time > 0) { unpackTime(&absTime, isAbsolute, time); } // Enter safepoint region // Beware of deadlocks such as 6317397. // The per-thread Parker:: mutex is a classic leaf-lock. // In particular a thread must never block on the Threads_lock while // holding the Parker:: mutex. If safepoints are pending both the // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock. ThreadBlockInVM tbivm(jt); // Don't wait if cannot get lock since interference arises from // unblocking. Also. check interrupt before trying wait if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) { return; } int status ; if (_counter > 0) { // no wait needed _counter = 0; status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; // Paranoia to ensure our locked and lock-free paths interact // correctly with each other and Java-level accesses. OrderAccess::fence(); return; }#ifdef ASSERT // Don't catch signals while blocked; let the running threads have the signals. // (This allows a debugger to break into the running thread.) sigset_t oldsigs; sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals(); pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);#endif OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */); jt->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self() assert(_cur_index == -1, "invariant"); if (time == 0) { _cur_index = REL_INDEX; // arbitrary choice when not timed status = pthread_cond_wait (&_cond[_cur_index], _mutex) ; } else { _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX; status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ; if (status != 0 && WorkAroundNPTLTimedWaitHang) { pthread_cond_destroy (&_cond[_cur_index]) ; pthread_cond_init (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr()); } } _cur_index = -1; assert_status(status == 0 || status == EINTR || status == ETIME || status == ETIMEDOUT, status, "cond_timedwait");#ifdef ASSERT pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);#endif _counter = 0 ; status = pthread_mutex_unlock(_mutex) ; assert_status(status == 0, status, "invariant") ; // Paranoia to ensure our locked and lock-free paths interact // correctly with each other and Java-level accesses. OrderAccess::fence(); // If externally suspended while waiting, re-suspend if (jt->handle_special_suspend_equivalent_condition()) { jt->java_suspend_self(); }}// unpark 实现,相对简单些void Parker::unpark() { int s, status ; status = pthread_mutex_lock(_mutex); assert (status == 0, "invariant") ; s = _counter; _counter = 1; if (s < 1) { // thread might be parked if (_cur_index != -1) { // thread is definitely parked if (WorkAroundNPTLTimedWaitHang) { status = pthread_cond_signal (&_cond[_cur_index]); assert (status == 0, "invariant"); status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant"); } else { // must capture correct index before unlocking int index = _cur_index; status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant"); status = pthread_cond_signal (&_cond[index]); assert (status == 0, "invariant"); } } else { pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; } } else { pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; }}
从上面代码可以看出,阻塞主要借助于三个变量,_cond, _mutex, _counter, 调用linux系统的 pthread_cond_wait, pthread_mutex_lock, pthread_mutex_unlock (一组POSIX标准的阻塞接口)等平台相关的方法进行阻塞了! 而 park.cpp中,则只有 Allocate、Release 等的一些常规操作!
// 6399321 As a temporary measure we copied & modified the ParkEvent::// allocate() and release() code for use by Parkers. The Parker:: forms// will eventually be removed as we consolide and shift over to ParkEvents// for both builtin synchronization and JSR166 operations.volatile int Parker::ListLock = 0 ;Parker * volatile Parker::FreeList = NULL ;Parker * Parker::Allocate (JavaThread * t) { guarantee (t != NULL, "invariant") ; Parker * p ; // Start by trying to recycle an existing but unassociated // Parker from the global free list. // 8028280: using concurrent free list without memory management can leak // pretty badly it turns out. Thread::SpinAcquire(&ListLock, "ParkerFreeListAllocate"); { p = FreeList; if (p != NULL) { FreeList = p->FreeNext; } } Thread::SpinRelease(&ListLock); if (p != NULL) { guarantee (p->AssociatedWith == NULL, "invariant") ; } else { // Do this the hard way -- materialize a new Parker.. p = new Parker() ; } p->AssociatedWith = t ; // Associate p with t p->FreeNext = NULL ; return p ;}void Parker::Release (Parker * p) { if (p == NULL) return ; guarantee (p->AssociatedWith != NULL, "invariant") ; guarantee (p->FreeNext == NULL , "invariant") ; p->AssociatedWith = NULL ; Thread::SpinAcquire(&ListLock, "ParkerFreeListRelease"); { p->FreeNext = FreeList; FreeList = p; } Thread::SpinRelease(&ListLock);}
综上源码,在进行阻塞的时候,底层并没有(并不一定)要用while死循环来阻塞,更多的是借助于操作系统的实现来进行阻塞的。当然,这也更符合大家的猜想!
从上的代码我们也发现一点,底层在做许多事的时候,都不忘考虑线程中断,也就是说,即使在阻塞状态也是可以接收中断信号的,这为上层语言打开了方便之门。
如果要细说阻塞,其实还远没完,不过再往操作系统层面如何实现,就得再下点功夫,去翻翻资料了,把底线压在操作系统层面,大多数情况下也够用了!